
An Empirical Study of License Violations in Open
Source Projects

Arunesh Mathur∗, Harshal Choudhary†, Priyank Vashist‡, William Thies§, Santhi Thilagam¶

∗ † ‡ ¶ National Institute of Technology Karnataka, Surathkal
§ Microsoft Research India

Abstract—The use of Open Source Software (OSS) components
in building applications has presented the challenge of integrating
these components such that, the licenses of the individual
components do not conflict with each other and if applicable, the
overall license of the application. Such license incompatibilities
lead to violations, having far-reaching legal consequences. While
proprietary software developers are at the risk of not satisfying
the terms of OSS licenses, a large degree of code reuse with
in the OSS community poses similar threats too. By examining
a set of 1423 projects, consisting of approximately 69 million
non-blank lines of code from Google Code project hosting, we
validate instances of code reuse between projects by comparing
their licenses. To help evaluate such instances, we look for the
reuse of files having the same content, which represents an
upper bound on the reuse. We discover 6 violations, which we
characterize based on the rules set by the licenses involved. In
addition, we present statistics on code reuse with in the set of
projects.

Index Terms—Software reusability, Open source software,
Legal factors

I. INTRODUCTION

Over the years, the increasing popularity of open source
software over the Internet has created a collaborative environ-
ment consisting of software components, which can be used to
provide a variety of functionality. These components may in-
clude projects or parts of projects, that can be plugged into new
software or existing software, bringing about savings in time
and money. Potential users of such components (for example,
FFmpeg1) include both — proprietary software developers
(close source products like Bits on the Run, MovieGate etc.)
and developers from the OSS community (open source projects
like VLC, MPlayer etc).

The degree to which such a component may be reused is
generally defined by the license that accompanies it. For ex-
ample, some components of the FFmpeg library are distributed
under the GNU Lesser General Public License (LGPL) version
2.1 or later, which while supporting free software, enables a
certain degree of reuse in proprietary software. Each license
imposes certain restrictions and allowances; but due to wide
variety of approved open source licenses available (69 as
of May 2012), legal issues between licenses emerge when
components with incompatible licenses are integrated together.

1FFmpeg is a widely used multimedia library (http://ffmpeg.org)

This has been characterized as the license-mismatch problem
[1]. For instance, the GNU General Public License (GPL)
has two popular versions that are widely accepted – version
2 and version 3, but the latter is not backwards compatible
with components that are released under version 2 only (not
upgradable to version 3 or a later version). In cases where the
developers have no choice, other than to combine components
released under incompatible licenses, they may choose to
resolve such an impasse by forming a new license, that is
compatible with the each of the licenses of the individual
components. The writing of new licenses to combat the
license mismatch problem is known as license proliferation
[2]. License proliferation leads to further incompatibilities and
is thus discouraged strongly by the Open Source Initiative
(OSI, http://opensource.org). The OSI has set up a License
Proliferation (LP) Committee to specifically tackle this prob-
lem [3].

Corporate firms especially are at a big risk of using
OSS without complying with the terms of their licenses,
which is why most have a legal department that deals with
any such discrepancies. Perhaps the most famous GPL
violation involved the use of BusyBox, which provides Unix
utilities for embedded devices, in Monsoon Multimedia Inc.’s
proprietary software, which resulted in a US court case with
BusyBox being supported by the Software Freedom Law
Center (SFLC). The case resulted in a compensation fee
being paid by Monsoon Media Inc. to the developers of
BusyBox [4]. In 2009 many software companies were found
using BusyBox in their software without complying to the
terms of the GPL which again resulted in a lawsuit [5]. In
order to prevent such scenarios from arising, companies like
BlackDuckSoftware (http://www.blackducksoftware.com/),
OpenLogic (http://www.openlogic.com/) and Palamida
(http://palamida.com) have started providing consulting,
tools and services to firms that plan on using OSS in their
products. Code search engines like Krugle (http://krugle.org)
and Koders (http://koders.com) provide advanced code search
options, which include filtering down search results by
licenses, for code that is available out in the open.

Due to the high degree of code reuse in the open
source community, we believe that open source devel-
opers too have similar concerns. For example, Emacs
(http://www.gnu.org/software/emacs/), a widely used GPL’ed



text editor recently fixed a violation [6]; its developers had
failed to make publicly available the sources of a certain
grammar which the GPL required them to do. Through this
empirical study, we aim to discover cases of license violations
in vast array of open source projects by tracking cases of
code reuse, and subsequently validating them by checking
for license compatibility. Comparing such a large code base
can potentially be time and resource consuming. In order to
achieve this, we first retrieve a large repository of open source
projects and scan for code clones between projects, using the
approach of a plagiarism detection tool – MOSS (Measure of
Software Similarity) [7], which has been tried on a variety of
programming languages.

The rest of the paper is organized as follows: Section II
presents the related work, Section III briefly describes open
source licensing, Section IV presents the sample set selection
process, Section V presents the approach behind this study,
Section VI presents the results and findings, In Section VII,
we conclude the paper, with suggestions for future work.

II. RELATED WORK

Reasons and motivations for code reuse in OSS have been
researched previously. Through a case study involving 15 open
source projects, von Krogh et al. [8] show there is active
reuse of code, algorithms and methods in the open source
community. Haefliger et al. [9] examine the behavior of open
source developers – comparing them with their counterparts in
corporate firms based on incentives to reuse code by examining
a set of 6 open source projects. The authors point out that
OSS developers reuse code to mitigate development costs, to
avoid working on mundane problems and instead focus on the
difficult ones or quickly release production code.

The vast field of code clone detection tools have been
surveyed in [10]. Despite the presence of a large number of
such tools, there have been no reports of their performance on
a large scale. A large number of these tools are used for finding
clones in smaller sets and focus on improving the quality of
results rather than scaling.

There is a notable lack of large scale analysis of code
repositories that track reuse of OSS. Audris Mockus [11] quan-
tifies large scale code reuse in popular and large open source
projects and confirms the existence of more than 50% of the
files in more than one project, by finding directories of source
code files that share several file names and only selecting those
cases where the fraction of files was greater than a threshold.
While this may seem as a reasonable heuristic, comparing
the content of source code files would seem to provide a
tighter bound than by just comparing their file names. The
performance of both these techniques is captured in a study
of code reuse in the FreeBSD project by Chang and Mockus
[12]. The authors report that comparing files based on their
content produces results with fewer false positivies than file
name based comparison, which also fails to detect the same
file with a different name.

The legal ramifications of code reuse in the context of open
source licenses has been a lesser explored topic. German
and Hassan [1] develop patterns and models that could be
used by developers to solve conflicts and compatibility issues
between open source licenses. Sojer et al. [13] analyze the
risks professional software developers face when reusing
code in an ad-hoc fashion from the Internet. Based on a
survey of 869 professional developers, the authors conclude
that ad-hoc code reuse from the Internet is common and
that most developers are oblivious of the legal implications
of such code reuse. Recently, tools that can detect open
source license violations at the binary level – Fingerprint
Generator/Detector (FiGD) [14] and Binary Analysis Tool
(BAT) [15] – have been developed. We, however, are looking
for license violations on the source code level, rather than the
binary level.

III. OPEN SOURCE LICENSING

Licenses provide copyright holders, a means of delegating
permissions to distribute, modify or build derivative works
to potential users of their software. The OSI lists a set of
requirements that any license must fulfill on order to be
recognized as a valid open source license, called the Open
Source Definition (OSD) [16]. The requirements of the OSD
include: (i) Allow free redistribution of and modification of
the code; (ii) Make the source code available to the public
(via. the Internet); (iii) Allow derived works to be distributed
under the original license; (iv) Not discriminate against any
group or individual; (v) Must not be specific to a technology
and not restrict any software. Open source licenses are broadly
classified as Copyleft/Restrictive and Permissive licenses. Per-
missive licenses do not add constraints on the licensing of
the derivative code, except for a reference/citation and that
the license text be untouched in the modified/distributed code.
Copyleft licenses on the other hand, influence the license of
the derived/modified code by necessitating it to be released
under the license of the original software.

Google Code project hosting offers a set of eight different
licenses to choose from: (i) GNU General Public License
version 2 (GPL v2); (ii) GNU General Public License version
2 (GPL v3); (iii) GNU Lesser General Public License version
3 (LGPLv3); (iv) Apache License version 2.0 (APLv2);
(v) MIT License; (vi) New BSD License/3-Clause (New
BSD); (vii) Artistic License/GPL (AL/GPL); (viii) Mozilla
Public License version 1.1 (MPLv1.1). The GPL is a strong
copyleft license, while the New BSD/MIT/APLv2 licenses are
non-copyleft and permissive. All other licenses lie in between.
Apart from these eight choices, Google Code provides the
Other Open Source (OOS) option to use all other licenses.

We use notations similar to

IV. SAMPLE SET SELECTION

We started by identifying sources of large open source
project repositories. Of particular importance to us was that



every project in such a corpus be released under any popular
open source license(s), allowing clear compatibility checks.
We evaluated popular code hosting services like Google Code
project hosting (http://code.google.com/hosting/), GitHub
(http://github.com) and SourceForge (http://sourceforge.net),
which have a wide variety of open source projects that are
managed by developers over the web. Google Code offered
a set of 10 popular open source licenses to choose from,
while SourceForge offered over 80 license options. GitHub
encouraged developers to indicate the license in a COPY-
ING/LICENSE file. However, when such a file was absent the
license of the project remained unknown. All three services
allowed the project files to be browsed online or cloned to a
local drive.

We chose Google Code Hosting over the other two options
due to the concise set of licenses it offered, which made
it easier to identify cases of license violations. To get a
good mix of projects, we started by selecting projects with
programming languages tags such as C, CPlusPlus, Java,
Python, JavaScript, ObjectiveC etc. We then added projects
with tags like Database, Game, Web, Google, Linux, Windows,
MacOSX, iPhone, Android, Graphics etc. During this phase,
for each project, we pinned down its license, repository URL
and Activity level. The Activity level describes the degree of
contribution of the developers over time, and can take values
High, Medium, Low or None. A High level indicates that the
project is in active development while None indicates it has
had very little/no activity.

After the list of projects were selected, we retrieved
snapshots of their version control repositories using the URLs
stored in the previous phase. For projects having no source
code in their git/svn/hg branch, we checked whether they
had migrated to a different location (usually mentioned on
the project home page) and in such cases, we retrieved code
from the new destination. In all other scenarios we scanned
the Downloads tab for potential source code files. We had
to write special tools and scripts to automate this process
and to ignore any non-text files that could be present in the
project. In total, we managed to gather a set of 1423 projects,
retrieved between January and March 2012.

V. RESEARCH METHOD

This section describes two topics: (i) Our definition of
license violations and how code reuse assists us in detecting
them; and (ii) The approach we followed to detect code reuse
in the sample set of open source projects (Section IV).

A. Defining code reuse and violations

Before describing the ideas behind this study, it is crucial to
establish our definitions of code reuse and license violations.
We are searching for cases where one project incorporates a
set of source code files (or a part of the set) from another
project in the same corpus. Such source code files are those
that belong to the provider project and are not, for example,
a third party library (outside of the corpus) that both projects

Preprocessing

Fingerprinting

Comparing

Fig. 1. Architecture of MOSS

may coincidentally use. We are not interested in accredited
lines of code that may be reused between projects, since such
reuse is highly granular and difficult to detect.

Let X and Y denote two distinct open source projects
from our corpus, with Y (the acceptor) reusing/deriving code
that exists in X (the provider). Let L1 denote the license of
the original code in X as and L2 denote the license of the
derived/reused code in Y. When L1 �= L2, we categorize the
following cases as violations:

1) L1 and L2 are incompatible,
2) L1 and L2 are compatible, but L1 is of copyleft nature.
In cases where L2 was Other Open Source, and the author

of the code failed to explicitly specify a license or vice
versa, we considered them as special cases of Type 1. A
hypothetical example for violations of Type 1 could be: L1 is
the MPLv1.1 and L2 is the GPL (v2 or v3) as these licenses
are incompatible. A similar example for Type 2 would be: L1
is licensed under the GPL (v2 or v3) and L2 is MIT licensed.
Although the GPL (v2 or v3) is compatible with the MIT
license, the former requires the latter to be covered under the
GPL as well.

Plagiarism detection tools are often used to find small
pieces of text/code similarity and are used in academic
settings for checking assignments turned in by students
and conference submissions. Our approach is based on the
plagiarism detection tool MOSS, which starts by building
hashes of k–grams of source code files, and then selecting
files that have the most common hashes to compare. This
helps in scaling the comparison process efficiently, while
keeping the it fundamentally, independent of the programming
language. MOSS is available as a Internet service, and since
we couldn’t use it in its current form, we built a modified
version to suit our purpose of detecting clones.

B. Architecture

The architecture of this system is shown in Figure 1 and
consists of three phases – Preprocessing, Fingerprinting and
Comparing. The Preprocessing stage removes all superfluous



features of the text such as whitespace, capital letters, new
lines etc., which are not desirable differences between text
files. Since MOSS has primarily been used in academic
settings, it replaces all instances of variable declarations with
a common symbol before it begins matching files, as students
may choose to modify variable names to evade such tools.
However, it is believed that in the open source world, de-
velopers do not resort to such techniques and code reuse is
mostly, black–box [9]. For this reason, we do not modify or
replace any variable declarations.

Once the source code is preprocessed, the Fingerprinting
stage starts by dividing it into k–grams, which are continuous
substrings of size k. The total number of k–grams generated for
a string of size n are n−k+1. These k–grams are hashed, and
subsequently, a subset of these are selected as the fingerprint
of a file. Assuming the hashes are collision free, if two files
share the same hash, then it is very likely that they share
the same k–gram. For a large set of files, hashing can be a
very computationally intensive process for large values of k.
Rabin-Karp’s rolling hash function reduces this complexity by
computing the hash of the ith k–gram from the hash of the
i − 1th k–gram. For example, consider the k–gram (c1 c2 . .
. ck−1 ck), with each ci representing the ith character. Given
a base b, the k–gram’s hash H(i) is calculated as:

H(i) = c1 ∗ bk−1 + c2 ∗ bk−2 + ... + ck−1 ∗ b + ck (1)

Similarly, the hash H(i + 1) of the k–gram (c2 c3 . . . ck

ck+1) is:

H(i + 1) = c2 ∗ bk−1 + c3 ∗ bk−2 + ... + ck ∗ b + ck+1 (2)

Writing H(i + 1) in terms of H(i):

H(i + 1) = (H(i)− c1 ∗ bk−1) ∗ b + ck+1 (3)

Thus, calculating the hash of H(i + 1) from H(i) requires
two additions and two multiplications, which makes hashing
successive k–grams fast. Since for arbitrary b, the value of
H(i) may exceed the largest number that can be stored on a
machine, H(i) is stored as H(i) % m, where m is a prime
number. The choice of m is crucial to this computation, since
a poor selection could lead to an increase in collisions.

As stated before, for a file of length n, a total of n − k +
1 hashes are generated. When computed for a large number
of files, the hashes require a lot of storage space and reduce
efficiency. In order to counter this, it is preferred to select a
subset of these hashes, and store that as the fingerprint of a file.
This is achieved through the Winnowing algorithm defined as
follows:

Let a window of size w be a series of w continuous hashed
k–grams (hi, hi+1, . . ., hi+w−2, hi+w−1). From each window,
a hash is selected as follows:

1) Select the smallest hash in a window
2) In case of a tie, select the rightmost smallest hash

We store the hashes that form the fingerprint of the file in
a relational database, with the schema of the first table being,
(file id, project name, file name) and the second table being
(file id, hash, line numbers). The file id attribute from the
first table is its primary key and also serves as a foreign key
for the second table.

The Comparing phase starts once the fingerprints for all the
files in every project have been generated. To find files similar
to any given source code file d in project p, we select those
files that have the highest number of hash matches with d
and are outside of p. Files that have the matched hash count
greater than a given threshold t, are those that have a very
high probability of being similar to d. To make sure that
the matches obtained as a result of this phase are not false
positives, it is important to ignore boilerplate text. Open source
licenses usually require the user to place legal boilerplate at the
beginning of a file, which may lead to increasing the number
of matched hashes between files. To avoid this, we hash the
headers of all licenses that Google Code allows and ignore all
such hashes when matching files.

Finally, to highlight sections of a pair of files that were
matched, we used the line numbers attribute to aid us in
visually classifying the match as a genuine case of code reuse
or a false positive.

VI. RESULTS

A. Repository statistics

Through our sample selection process, we retrieved 1,423
projects equaling 340,164 text files, consisting of about 69
million lines of code.

Fig. 2. License statistics in the sample set

Figure 2 shows the number of projects in each license
category. The GNU GPLv3 and GPLv2 were among the most
widely used licenses and this is in accordance with their pop-
ularity in the open source space. The EPLv1.0 and MPLv1.1
were the least used licenses, since they are incompatible with
the GPL and prohibit further reuse. Both these licenses are



specific to the Eclipse and Mozilla community and generally,
are rarely used outside of those communities.

Fig. 3. Activity of projects in the sample set

Figure 3 shows the count of projects, activity wise. While
the activity of a project can change over time, depending on
numerous factors, we capture the activity status at a particular
instance during the course of this study. Most projects were
Medium-active and only a few were None-active.

B. Code Reuse

Our initial tests were to minimize collisions when hashing
source code files using the procedure described in Section V-B.
The value of k is important to report matches that are not
spurious and depends on the type of document. In practice,
setting the value of k to 40 seemed to detect cases across most
programming languages. In our first experiment, we hashed
about 10 MB of text and selected m to be a 32-bit prime
number. We observed a total 128 collisions; switching to a 64
bit prime number led to zero collisions. A total of 31,187,119
hashes were generated as a result of the Fingerprinting phase.
Independently testing the threshold size t, we found that a
lower bound value of 45 works reasonably well in detecting
similar files, even across different programming languages.
While we did find false positives, it is worth noting that
ignoring hashes of legal license headers helped reduced them
to a minimum.

We discovered a total of 103 cases of code reuse between
projects, the details of which are presented in Table II. Like
corporate firms, which have ratings and certification for code
that can be reused within the firm, open source developers too
look for the quality of the code, because poorly written code
can be detrimental to any system; popularity of code can serve
as a proxy certification in the open source world [9], that is,
projects that were actively developed and updated were reused
more. This is supported by Figure 4, which shows the activity
levels of projects that were reused. Although High and Medium
active projects were almost equally used (16 each), it is worth
nothing that High active projects constitute only 14.8% , but

Medium active projects constitute 56.3% of the total projects.
Subsequently, the reuse rate for High active projects (7.6%) is
considerably higher than Medium active projects (2.0%).

Fig. 4. Activity of reused projects

C. License violations
Table I lists the cases of license violations out of the cases of

code reuse presented in Table II. A total of 6 license violations
were observed, with the the GPLv2 being violated five times.
The Type of violation column denotes the category of license
violation discussed in Section V. It is important to note that the
license mentioned on the project home page (selected while
creating the project) does not necessarily reflect the license of
the source code. It is only when all conditions of the license
are met, the project can claim to be licensed under it.

For example, to apply the GPLv3 to any project Foobar, the
minimum actions required are [17]:
• Provide a copy of the GPLv3
• Include the following GPLv3 header template at the top

of all the source files of that project:
This file is part of Foobar.

Foobar is free software: you can redistrib-
ute it and/or modify it under the terms of
the GNU General Public License as publishe-
d by the Free Software Foundation, either
version 3 of the License, or (at your opti-
on) any later version.

Foobar is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERC-
HANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public Licen-
se for more details.

You should have received a copy of the GNU
General Public License along with Foobar.
If not, see <http://www.gnu.org/licenses/>.

In 4/6 cases of violations, we found that the required steps
of the acceptor license were either not followed correctly or



Code provider [provider license] Code acceptor [Acceptor license] Acceptor license used correctly? Type of violation

flvplayer [MPLv1.1] khanacademy [OOS] not applicable 1

miranda [GPLv2] toptoolbar [LGPLv3] no 2

miranda [GPLv2] wi2geoplugin [MIT] no 2

miranda [GPLv2] miranda-twitter-oauth [GPLv3] no 1

mockcpp [GPLv3] test-ng-pp [LGPLv3] no 2

siphon [GPLv2] csipsimple [GPLv3] yes 1

TABLE I
LICENSE VIOLATIONS CASES

were incomplete. Therefore, these 4 cases cannot be truly
be considered as cases of violations, as the license of the
acceptor project in each of these cases is unclear. We classify
such violations as violations of recommended practice, where
the recommended practice refers to meeting the requirements
specified by the license. In other words, had the developers
of the acceptor project followed the conditions of the license
they intended to use, the provider project’s license would have
been violated in the process.

In the following sections, we describe each case in detail
along with the licenses in violation. We also present if using
alternate libraries could sort out the violations wherever
applicable.

1) Flvplayer: Flvplayer (http://code.google.com/p/flvplayer)
is a flash player library that can be embedded into websites
for streaming purposes, and is released under the MPLv1.1,
which provides a limited amount of copyleft by requiring
modifications to MPLv1.1 files and files that copy MPLv1.1
code to be released under the same license. It is used by
the Khan Academy, an online e-learning portal that provides
video lectures for a variety of subjects on its website
(http://code.google.com/p/khanacademy) to stream the flash
content. By choosing Other Open Source as its license choice,
the developers of the Khan Academy website are required to
specify the license explicitly, which they fail to do [18](issued
by us on their active GitHub repository), resulting in a
violation of Type 1. Thus, the Flvplayer library is linked with
the unlicensed (essentially copyrighted) website source files
and this makes it crucial to understand the options available
to license the files that use the Flvplayer code. Such files
cannot be released under licenses that are incompatible with
the MPLv1.1, for example, the GPLv2 or GPLv3.

There exist other alternatives to Flvplayer –
OSFlv player (http://www.osflv.com), f4player
(http://gokercebeci.com/dev/f4player) and flowplayer
(http://flowplayer.org) – all licensed under the GPLv3,
but they would require the developers of Khan Academy’s
website to release the linked files under the GPLv3. However,
we are unsure if the integration of these players would be
ideal from a technology perspective.

2) Miranda: Miranda (http://code.google.com/miranda) is
a multi-protocol instant messenger released under the GPLv2
with an option for the licensee (in this case, the developers
that reuse the code) to choose a later version – the GPLv3.
We discover the following three cases of violations:

• Toptoolbar (http://code.google.com/p/toptoolbar) is a
plugin/extension that adds a toolbar for quick access of
functions in the Miranda IM client and is released under
the LGPLv3 (or a later version). Since the licensee
can choose either of the GPLv2 or a later version,
namely the GPLv3 for code from the Miranda SDK,
this leads to two different kinds of violations. The
GPLv2 is incompatible with the LGPLv3, and hence
leads to a violation of Type 1, where as the GPLv3 is
compatible with the LGPLv3, but requires Toptoolbar to
be conveyed under the GPLv3 and leads to a violation
of Type 2. The code used from Miranda consists of GUI
components that are Miranda specific and thus leads to
the non-availability of alternatives. This impasse can be
solved by releasing Toptoolbar under the GPLv2 (or a
later version).

• Wi2geoplugin (http://code.google.com/p/wi2geoplugin/),
is another plugin/extension that enables location based
sharing in the Miranda IM client (also for Skype and
Quiet Internet Pager [QIP]) released under the permissive
MIT license. However, by using and linking against
the GPL’ed code of Miranda, Wi2geoplugin forms a
derived work, which is required to be released under the
GPLv2 (or a later version) and is a violation of Type 2.
Again, the code borrowed from Miranda consists of GUI
components among others, which are essential to create
and integrate Wi2geoplugin to Miranda. Since the reused
set of code is specific to Miranda, it would be difficult
to find alternatives, under a more permissive license that
are compatible with the MIT license; it would be easier
for the developers of Wi2geoplugin to release the files
that link to the Miranda SDK under the GPLv2 (or a
later version).

• Miranda-twitter-oauth (htp://code.google.com/p/miranda-
twitter-oauth) is a plugin that adds a Twitter sidebar to



the Miranda IM to read/write tweets. Released under
the GPLv3, it is compatible with the Miranda SDK
code as long as the licensee chooses to follow the
terms of the GPLv3 instead of the GPLv2, which is
incompatible with the former and a violation of Type 1.
The reused code consists of Miranda’s content update
and GUI components that cannot be replaced with
more permissively licensed ones. Thus, by choosing the
GPLv3 instead of the GPLv3 for Miranda’s components,
the licensees avoid running into conflicts.

3) Mockcpp: Mockcpp (http://code.google.com/p/mockcpp)
is a mock C++ object creation framework that is available
under the GPLv3 license and is used by Test-ng-pp
(http://code.google.com/p/test-ng-pp/) a C++ testing
framework which is licensed under the LGPLv3. The
GPLv2 and the LGPLv3 are compatible licenses, but using
GPLv3 code in a LGPLv3 licensed project requires the
project to be conveyed under the GPLv3. While the Test-
ng-pp project is released under the LGPLv3. the sources
contain the GPLv3 header, which makes it difficult to
identify its actual license. Assuming a LGPLv3 license,
it will be required to be released under the GPLv3 to
be compatible with Mockcpp. However if the developers
of Test-ng-pp intended to make a LGPLv3 release, then
alternate C++ mock object frameworks like GoogleMock
(http://code.google.com/p/googlemock/) – released under the
New BSD license and Amop (http://code.google.com/p/amop/)
– released under the MIT license provide suitable licenses.
Note that we are unsure if these frameworks are suitable to
Test-ng-pp’s use case.

4) Siphon: Siphon (http://code.google.com/p/siphon) is
GPLv2 (or a later version) licensed Session Initiation Protocol
(SIP)/ Voice over Internet Protocol (VoIP) application for
the iOS platform licensed under the GPLv2 (or a later
version). Csipsimple (http://code.google.com/p/csipsimple/) is
the equivalent for Android phones which is released under
the GPLv3. It uses links files relating to G.729a, and audio
data compression algorithm used in VoIP written in C, from
the Siphon project. This would potentially lead to a violation
if the developers of Csipsimple followed the terms of the
GPLv2 (and not the GPLv3) for the G.729a code, since the
GPLv2 and GPLv3 are incompatible licenses and a violation
of Type 1. Note that although G.729a is originally not a part
of Siphon; it was modified by the developers of Siphon to
suit their needs and subsequently re-licensed under the GPLv2.

VII. CONCLUSION & FUTURE WORK

With a large number open source components just a click
away, license compatibility is quickly turning into an intricate
scenario, that needs to be dealt with diligence. The legal com-
plications involved in using open source licenses is imperative
to the success of any project. Unlike corporate firms which
have IP lawyers and attorneys assisting them in using OSS,

open source developers have no such comforts. Crucial to the
core of this study was the use of open source projects from
project hosting websites; intuitively, on may not expect mature
GNU projects to be violating licenses. By using comparing
files on content, rather than file names, we present an upper
bound on the reuse of source code files and manually validate
license violations.

While Multi-licensing – where the developer may offer
the user choices of licenses to use – has to a certain extent
sorted license compatibility, it requires a developer to have
knowledge about a variety of licenses and may lead to an
increase in license proliferation. Examples of Multi-licensed
software include or example, the PERL license, which offers a
choice between the Artistic License and the GPL and JQuery,
which offers using the GPL or the MIT license. The Mozilla
projects were tri-licensed (MPLv1.1 or later, GPLv2.1 or later,
LGPLv2.1 or later) initially, but have recently migrated to
MPLv2.0.

We are working on ways to automate licensing options
for OSS, by examining the source code and suggesting the
choices of licenses that the software can be released under,
or what parts of the software need to be replaced in order
to shift to a more acceptable license. Such a tool could be
integrated with code search engines to provide substitute
packages.

ACKNOWLEDGMENTS

We are grateful to Alwyn Roshan Pais for his comments
and feedback on the code detection tool. We would also
like to thank Gervase Markham and Clint Adams for useful
discussions on open source licensing.

REFERENCES

[1] D. M. German and A. E. Hassan, “License integration patterns:
Addressing license mismatches in component-based development,”
in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 188–198. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070520

[2] “License proliferation,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation

[3] “License proliferation report,” accessed April, 2012. [Online]. Available:
http://www.opensource.org/proliferation-report

[4] “On behalf of busybox developers, sflc files first ever u.s.
gpl violation lawsuit,” accessed April, 2012. [Online]. Available:
http://www.softwarefreedom.org/news/2007/sep/20/busybox/

[5] “Best buy, samsung, westinghouse, and eleven other brands
named in sflc lawsuit,” accessed April, 2012. [Online].
Available: http://www.softwarefreedom.org/news/2009/dec/14/busybox-
gpl-lawsuit/

[6] “Emacs license violation,” accessed April, 2012. [Online]. Available:
http://lists.gnu.org/archive/html/emacs-devel/2011-07/msg01155.html

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, ser.
SIGMOD ’03. New York, NY, USA: ACM, 2003, pp. 76–85. [Online].
Available: http://doi.acm.org/10.1145/872757.872770



[8] G. v. Krogh, S. Spaeth, and S. Haefliger, “Knowledge reuse in open
source software: An exploratory study of 15 open source projects,”
in Proceedings of the Proceedings of the 38th Annual Hawaii
International Conference on System Sciences - Volume 07, ser. HICSS
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp.
198.2–. [Online]. Available: http://dx.doi.org/10.1109/HICSS.2005.378

[9] S. Haefliger, G. von Krogh, and S. Spaeth, “Code reuse in open
source software,” Manage. Sci., vol. 54, no. 1, pp. 180–193, Jan. 2008.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.1070.0748

[10] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2009.02.007

[11] A. Mockus, “Large-scale code reuse in open source software,” in
Proceedings of the First International Workshop on Emerging Trends
in FLOSS Research and Development, ser. FLOSS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 7–. [Online]. Available:
http://dx.doi.org/10.1109/FLOSS.2007.10

[12] H.-F. Chang and A. Mockus, “Evaluation of source code copy
detection methods on freebsd,” in Proceedings of the 2008 international
working conference on Mining software repositories, ser. MSR ’08.
New York, NY, USA: ACM, 2008, pp. 61–66. [Online]. Available:
http://doi.acm.org/10.1145/1370750.1370766

[13] M. Sojer and J. Henkel, “License risks from ad hoc reuse of code from
the internet,” Commun. ACM, vol. 54, no. 12, pp. 74–81, Dec. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2043174.2043193

[14] C. Brown, D. Barrera, and D. Deugo, “Figd: An open source
intellectual property violation detector,” Proceedings of the 21st
International Conference on Software Engineering Knowledge
Engineering SEKE2009, pp. 536–541, 2009. [Online]. Available:
http://scs.carleton.ca/ cbrown7/papers/seke09-figd.pdf

[15] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding
software license violations through binary code clone detection,”
in Proceedings of the 8th Working Conference on Mining Software
Repositories, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 63–
72. [Online]. Available: http://doi.acm.org/10.1145/1985441.1985453

[16] “Open source document,” accessed April, 2012. [Online]. Available:
http://opensource.org/docs/osd

[17] “How to use the gpl licenses for your own software,” accessed April,
2012. [Online]. Available: http://www.gnu.org/licenses/gpl-howto.html

[18] “Khan academy website license unspecified,” accessed April, 2012.
[Online]. Available: https://github.com/Khan/khan-website/issues/3



Code provider [provider activity] Code acceptor [acceptor activity]

lufa-lib [High] micropendous [High], embedded-projects [High], usb-travis [High], hiduino [Medium]

arduino [High] pushpak [Medium], micropendous [High], wireplant [Low], easyrobot [Medium]

libsquish [Medium] libhplasma [Medium], nvidia-texture-tools [Medium]

guichan [Low] db-tins07 [Medium], db-speedhack07 [Medium], naruto-hand-signs-fighting [Low]

upp-mirror [High] boxvivd [Medium], upp-mac [Low]

portableproplib [Medium] xbps [High]

chipmunk-physics [Medium] chipmunk-space-manager [Medium], cocos2d-x [Medium], cocos2d-iphone [High]

box2d [Low]
quickanoid [Low], emo-framework [High], upp-mirror [High], cocos2d-iphone [High],

cocos2d-x [Medium], party-family[Medium], cocos2d-android [Medium]

skia [High] cocos2d-x [Medium]

cocos2d-iphone [High] ccjoystick [Medium], cocos2d-x [Medium], chipmunk-spacemanager [Medium]

kissxml [Medium] parallax-scrolling-videogame [Low], xmppframework [High]

cocoahttpserver [Medium] runtimebrowser [High], xmppframework [High]

cocoaasyncsocket [High] mjpeg-iphone [Medium], cocoahttpserver [Medium]

cocoalumberjack [Medium] cocoahttpserver [Medium]

syphon-framework [Medium] syphon-implemenatations [Medium]

miranda [High]
miranda-twitter-oauth [Medium], mirandaimplugins [Low], dbmmapmod [Medium],

pboonplugins [Medium], pescuma [Medium], toptoolbar [None], wi2geoplugin [None]

mirandaimplugins [Low] dezeath [Medium]

juced [Medium] ugen [Medium]

gwen [High] party-family [Medium]

msinttypes [Low]
omega-cronus [Low], mockcpp [Medium], soar [Medium], networkpx [Medium], ossbuild [High]

sacd-ripper [Medium], foxpilot [Medium], test-ng-pp [Medium], 3ceamu [High], wagic [High]

libjingle [High] pescuma [Medium], gtalkbot [High], ipcamera-for-android [Low]

growl [High] growlmail [High], quicksynergy [Low], sequel-pro [High], kaincode [Medium], welly [High]

gtm-oauth [Medium] etsycocoa [High]

google-toolbox-for-mac [Medium] precipitate [Medium], update-engine [Low], mocean-sdk-ios [High], blazingstars [Medium]

codesuppository [Medium] meshimport [Medium]

gtm-http-fetcher [Medium]
gtm-oauth [Medium], etsycocoa [High], gtm-oauth2 [Medium], google-api-objectivec-client [Medium],

gdata-objectivec-client [High]

gtm-oauth2 [Medium] google-api-objectivec-client [Medium], gdata-objectivec-client [High]

gdata-objectivec-client [High] update-engine [Low], precipitate [Medium], google-email-uploader-mac[Medium], vidnik[Low]

mockcpp [Medium] test-ng-pp [Low]

effocore [None] effogpled [Low]

googletest [Medium] cpp-library-project-template [Low], easyrobot [Low], party-family [Low], slimdx [High]

support [High]
winx [Low], adlaird [Low], avbin [Low], postgres-kit [High], libdgnsc [Low],

duplicate-windows [Low], doom-android [Low]

android-wifi-tether [High] android-wired-tether [High]

jmonkeyengine [High] jme-glsl-shaders [Medium], jmonkeyplatform-contributions [Medium]

jbox2d [High] plar [Medium], angry-food [Low]

siphon [High] csipsimple [Medium]

flvplayer [Medium] khanacademy [High]

TABLE II
CODE REUSE CASES


